A joint Fermilab/SLAC publication

LHCb uses charm to find asymmetry

11/14/11

Photo from 2004 showing the two almost 30-ton magnets in the LHCb detector, which was under construction at the time. Image: CERN

According to theory, matter and antimatter should have been created in equal parts during the big bang. But somehow, the balance of the two skewed in the universe’s first moments. Now, matter dominates nature.

Scientists from the LHCb collaboration at CERN recently saw curious possible evidence of this asymmetry: The difference between the decay rates of certain particles in their detector, D and anti-D charm mesons, was higher than expected.

This anomaly is evidence of charge-parity violation, a more precise descriptor of nature’s preference for matter. Other LHC experiments have seen such symmetry breaking, but this is a first sighting in these charm particles.

“CP violation is expected to be very small in charm physics,” LHCb member Bolek Pietrzyk said. “This is a really surprising result.”

The preliminary findings, which the collaboration presented Monday night in Paris, have a significance measured at 3.5 sigma. Statistically speaking, this indicates an interesting observation. But scientists will need more certainty before they can declare a discovery.

In this study, the group used data they collected in the first half of 2011. LHCb’s next steps will be to look at the rest of the 2011 data and see whether they can make sense of the observations within the Standard Model theory, or if they’ll need a new explanation.

View the presentation about the LHCb result

Read the CERN Bulletin article

Latest news articles
05/18/22
Sky & Telescope

Astronomers connect the dots between two strange doppelganger galaxies, uncovering what might be a string of galactic pearls created in a cosmic collision 8 billion years ago.

05/12/22
Event Horizon Telescope

The result provides overwhelming evidence that the object is indeed a black hole and yields valuable clues about the workings of such giants, which are thought to reside at the center of most galaxies.

05/10/22
Scientific American

THESAN—the largest, most detailed computer model of the universe’s first billion years yet made—is helping set expectations for observations from NASA’s James Webb Space Telescope.

05/05/22
Quanta

Theoretical physicist Sean Carroll discusses the quest for quantum gravity with host Steven Strogatz.