In 2023, the ALICE experiment was ready for their best year yet, until a mysterious signal threatened everything. As the LHC wraps up its 2025 lead-ion run, physicists recall how they worked together to solve the puzzle.
In a typical high school physics textbook, says scienceeducation specialist Beth Marchant, only the last chapter is devoted to all the developments since 1900–the stuff that physicists are actually working on today.
The Positron Electron Project (PEP) collider at the Stanford Linear Accelerator Center produced its first collisions in 1979. All sorts of particles burst out, including the tau lepton, an ephemeral cousin of the electron.
Mesons. Bosons. Pions. Muons. Asparagus. Yes, asparagus. Physicists have spare time, too, and a few of them spend it in Fermilab's Garden Club, with roots almost as old as the lab itself.
Neutron scattering research has improved the quality of many everyday items: Shatter-proof windshields, credit cards, pocket calculators, airplanes, compact discs, and magnetic storage tapes are just some examples.
Street banners honoring nine of Berkeley Lab's Nobel Prize winners, originally installed along Telegraph Avenue in 2003, have been mounted on poles on Cyclotron Road leading to Berkeley Lab in honor of its 75th anniversary.
Have you ever tossed a ball at a wall, playing a game of one-man catch? As you tossed that ball again and again and again, have you ever thought about the chance that it could go right through the wall? According to quantum mechanics, this is a real possibility.