A joint Fermilab/SLAC publication
Photo: Ping-pong test
Photo by CERN

LHC passes ‘ping-pong ball’ test


Physicists send an ultra-clean, miniature ping-pong ball through part of the Large Hadron Collider beam pipe to test for hidden defects.

Sometimes the best solutions in high-energy physics research are surprisingly low-tech.

Physicists sent a carefully sterilized, slightly-smaller-than-regulation ping-pong ball through a 2-mile section of the Large Hadron Collider today. They were searching for possible defects in the connections between magnets that can arise as they change temperature.

The so-called radio-frequency ball, first developed in 2007, carried a small transmitter that allowed scientists to track its progress. It moved through simple suction, pinging every third of a mile.

"The beam pipes are fragile,” says Vincent Baglin, the leader of the LHC beam vacuum section at CERN. “We always have to check and crosscheck to minimize any problems. This is a simple test that can prevent complicated issues."

The LHC's 17-mile circumference is composed of eight straight sections joined together by eight arcs. More than 1600 magnets bend and focus the beams of particles that circle the collider at close to the speed of light. Interconnections, some of which resemble long, copper fingers, ensure that electricity flows from one magnet to the next.

These interconnections are installed at room temperature, but they must operate at well below freezing when the machine is turned on. The metal contracts by about 40 millimeters when this happens. Usually, the fingers manage to stay flat. But, occasionally, the fingers buckle, creating a bulge that can block a particle beam.

Testing this with the actual beam would be a months-long, labor-intensive process, requiring cooling down the LHC and then warming it back up again to fix any identified problems.

So scientists opt for a test that takes about 15 minutes per section instead. Rather than sending a beam through the pipe, they send the RF ball. If it gets stuck, technicians use an endoscope to look into the pipe and diagnose the problem.

The LHC passed today’s test, but it will need to pass many more before its scheduled restart in 2015.

Latest news articles

Watch the underground groundbreaking

This afternoon, watch a livestream of the start of excavation for the future home of the Deep Underground Neutrino Experiment.


Stanford and University of California researchers found evidence of particles that are their own antiparticles. These 'Majorana fermions’  could one day help make quantum computers more robust.

Daily Herald

Hugh Lippincott, a Fermilab scientist, went on a Skype date while looking for dark matter. He writes that things turned out fine.


The LHCb experiment at CERN has reported the observation of a new particle containing two charm quarks and one up quark.